

face

[image: release] [https://pypi.org/project/face/] [image: calver] [https://calver.org] [image: changelog] [https://github.com/mahmoud/face/blob/master/CHANGELOG.md]

face is a Pythonic microframework for building command-line applications:

	First-class subcommand support

	Powerful middleware architecture

	Separate Parser layer

	Built-in flagfile support

	Handy testing utilities

	Themeable help display

Installation

face is pure Python, and tested on Python 3.7+, as well as PyPy. Installation is easy:

pip install face

Then get to building your first application!

from face import Command, echo

def hello_world():
 "A simple greeting command."
 echo('Hello, world!')

cmd = Command(hello_world)

cmd.run()

"""
Here's what the default help looks like at the command-line:

$ cmd --help
Usage: cmd [FLAGS]

 A simple greeting command.

Flags:

 --help / -h show this help message and exit
"""

Getting Started

Check out our Tutorial for more.

Contents:

	Tutorial
	Part I: Say

	Part II: Calc

	Part III: Middleware

	Part IV: Examples

	Command
	Command Exception Types

	Middleware

	Testing

	Input / Output
	TODO

	Face FAQs
	What sets Face apart from other CLI libraries?

	Why is Face so picky about argument order?

	Any recommended patterns for laying out CLI code?

Tutorial

Contents

	Part I: Say

	Positional arguments

	Flags

	Flags with values

	More Interesting Flag Types

	Part II: Calc

	Add and Multiply

	Subtract

	Divide

	Precision support

	Part III: Middleware

	Part IV: Examples

	Cut MP4

	Glom

	Pocket Protector

	Montage Admin Tools

Part I: Say

The field of overdone versions of echo has been too long dominated
by Big GNU.
Today, we start taking back the power.
We will implement the say command.

Positional arguments

While face offers a Parser interface underneath, the canonical way to
create even the simplest CLI is with the Command object.

To demonstrate, we’ll start with the basics, positional arguments.
say hello world should print hello world:

from face import Command, echo

def main():
 cmd = Command(say, posargs=True) # posargs=True means we accept positional arguments
 cmd.run()

def say(posargs_): # positional arguments are passed through the posargs_ parameter
 echo(' '.join(posargs_)) # our business logic

if __name__ == '__main__': # standard fare Python: https://stackoverflow.com/questions/419163
 main()

A basic Command takes a single function entrypoint, in our case, the
say function.

Note

Face’s echo() function is a version of print() with
improved options and handling of console states, ideal for CLIs.

Flags

Let’s give say some options:

say --upper hello world
or
say -U hello world
should print
HELLO WORLD.

...

 def main():
 cmd = Command(say, posargs=True)
 cmd.add('--upper', char='-U', parse_as=True, doc='uppercase all output')
 cmd.run()

 def say(posargs_, upper): # our --upper flag is bound to the upper parameter
 args = posargs_
 if upper:
 args = [a.upper() for a in args]
 echo(' '.join(args))

 ...

The parse_as keyword argument being set to True means that the
presence of the flag results in the True value itself. As we’ll
see below, flags can take arguments, too.

Flags with values

Let’s add more flags, this time ones that take values.

say --separator . hello world will print hello.world.
Likewise,
say --count 2 hello world
will repeat it twice:
hello world hello world

...

def main():
 cmd = Command(say, posargs=True)
 cmd.add('--upper', char='-U', parse_as=True, doc='uppercase all output')
 cmd.add('--separator', missing=' ', doc='text to put between arguments')
 cmd.add('--count', parse_as=int, missing=1, doc='how many times to repeat')
 cmd.run()

 def say(posargs_, upper, separator, count):
 args = posargs_ * count
 if upper:
 args = [a.upper() for a in args]
 echo(separator.join(args))

 ...

Now we can see that parse_as:

	Can take a value (e.g., True), which make the flag no-argument

	Can take a callable (e.g., int), which is used to convert the single argument

	Defaults to str (as used by separator)

We can also see the missing keyword argument, which specifies the
value to be passed to the Command’s handler function if the flag is
absent. Without this, None is passed.

Note

Face also supports required flags, though they are not an ideal CLI
UX best practice. Simply set missing to face.ERROR.

More Interesting Flag Types

say --multi-separator=@,# hello wonderful world
prints
hello@wonderful#world
(The separators repeat)

say --from-file=fname
reads the file and adds all words from it to its
output

say --animal=dog|cat|cow
will prepend “woof”, “meow”, or “moo” respectively.

Part II: Calc

(Details TBD!)

With echo having met its match,
we are on to bigger and better:
this time,
with math

$ num
<Big help text>

Add and Multiply

$ num add 1 2
3

$ num mul 3 5
15

Subtract

$ num sub 10 5
5
$ num sub 5 10
Error: can't substract
$ num --allow-negatives 5 10
-5

Divide

$ num div 2 3
0.6666666666666666
$ num div --int 2 3
0

Precision support

$ num add 0.1 0.2
0.30000000000000004
$ num add --precision=3 0.1 0.2
0.3

Oh, now let’s add it to all subcommands.

Part III: Middleware

(Details TBD!)

Doing math locally is all well and good,
but sometimes we need to use the web.

We will add an “expression” sub-command
to num that uses https://api.mathjs.org/v4/.
But since we want to unit test it,
we will create the httpx.Client in a middleware.

$ num expression "1 + (2 * 3)"
7

But we can also write a unit test that does
not touch the web:

$ pytest test_num.py

Part IV: Examples

There are more realistic examples of
face
usage out there,
that can serve as a reference.

Cut MP4

The script
cut_mp4 [https://github.com/mahmoud/face/blob/master/examples/cut_mp4.py]
is a quick but useful tool to cut recordings using
ffmpeg.
I use it to slice and dice the Python meetup recordings.
It does not have subcommands or middleware,
just a few flags.

Glom

Glom [https://github.com/mahmoud/glom/blob/master/glom/cli.py]
is a command-line interface front end for the glom library.
It does not have any subcommands,
but does have some middleware usage.

Pocket Protector

Pocket Protector [https://github.com/SimpleLegal/pocket_protector/blob/master/pocket_protector/cli.py] is a secrets management tool.
It is a medium-sized application with quite a few subcommands
for manipulating a YAML file.

Montage Admin Tools

Montage Admin Tools [https://github.com/hatnote/montage/blob/master/tools/admin.py]
is a larger application.
It has nested subcommands
and a database connection.
It is used to administer a web application.

Command

	
class face.Command(func, name=None, doc=None, **kwargs)

	The central type in the face framework. Instantiate a Command,
populate it with flags and subcommands, and then call
command.run() to execute your CLI.

Note that only the first three constructor arguments are
positional, the rest are keyword-only.

	Parameters

	
	func (callable) – The function called when this command is
run with an argv that contains no subcommands.

	name (str) – The name of this command, used when this
command is included as a subcommand. (Defaults to name
of function)

	doc (str) – A description or message that appears in various
help outputs.

	flags (list) – A list of Flag instances to initialize the
Command with. Flags can always be added later with the
.add() method.

	posargs (bool) – Pass True if the command takes positional
arguments. Defaults to False. Can also pass a PosArgSpec
instance.

	post_posargs (bool) – Pass True if the command takes
additional positional arguments after a conventional ‘–’
specifier.

	help (bool) – Pass False to disable the automatically added
–help flag. Defaults to True. Also accepts a HelpHandler
instance, see those docs for more details.

	middlewares (list) – A list of @face_middleware decorated
callables which participate in dispatch. Also addable
via the .add() method. See Middleware docs for more
details.

	
add(*a, **kw)

	Add a flag, subcommand, or middleware to this Command.

If the first argument is a callable, this method contructs a
Command from it and the remaining arguments, all of which are
optional. See the Command docs for for full details on names
and defaults.

If the first argument is a string, this method constructs a
Flag from that flag string and the rest of the method
arguments, all of which are optional. See the Flag docs for
more options.

If the argument is already an instance of Flag or Command, an
exception is only raised on conflicting subcommands and
flags. See add_command for details.

Middleware is only added if it is already decorated with
@face_middleware. Use .add_middleware() for automatic wrapping
of callables.

	
add_command(subcmd)

	Add a Command, and all of its subcommands, as a subcommand of this
Command.

Middleware from the current command is layered on top of the
subcommand’s. An exception may be raised if there are
conflicting middlewares or subcommand names.

	
add_middleware(mw)

	Add a single middleware to this command. Outermost middleware
should be added first. Remember: first added, first called.

	
get_dep_names(path=())

	Get a list of the names of all required arguments of a command (and
any associated middleware).

By specifying path, the same can be done for any subcommand.

	
get_flag_map(path=(), with_hidden=True)

	Command’s get_flag_map differs from Parser’s in that it filters
the flag map to just the flags used by the endpoint at the
associated subcommand path.

	
prepare(paths=None)

	Compile and validate one or more subcommands to ensure all
dependencies are met. Call this once all flags, subcommands,
and middlewares have been added (using .add()).

This method is automatically called by .run() method, but it
only does so for the specific subcommand being invoked. More
conscientious users may want to call this method with no
arguments to validate that all subcommands are ready for
execution.

	
run(argv=None, extras=None, print_error=None)

	Parses arguments and dispatches to the appropriate subcommand
handler. If there is a parse error due to invalid user input,
an error is printed and a CommandLineError is raised. If not
caught, a CommandLineError will exit the process, typically
with status code 1. Also handles dispatching to the
appropriate HelpHandler, if configured.

Defaults to handling the arguments on the command line
(sys.argv), but can also be explicitly passed arguments
via the argv parameter.

	Parameters

	
	argv (list) – A sequence of strings representing the
command-line arguments. Defaults to sys.argv.

	extras (dict) – A map of additional arguments to be made
available to the subcommand’s handler function.

	print_error (callable) – The function that formats/prints
error messages before program exit on CLI errors.

Note

For efficiency, run() only checks the subcommand
invoked by argv. To ensure that all subcommands are
configured properly, call prepare().

Command Exception Types

In addition to all the Parser-layer exceptions, a command or user endpoint function can raise:

	
class face.CommandLineError(msg, code=1)

	A FaceException and SystemExit subtype that
enables safely catching runtime errors that would otherwise cause
the process to exit.

If instances of this exception are left uncaught, they will exit
the process.

If raised from a run() call and
print_error is True, face will print the error before
reraising. See face.Command.run() for more details.

	
class face.UsageError(msg, code=1)

	Application developers should raise this CommandLineError
subtype to indicate to users that the application user has used
the command incorrectly.

Instead of printing an ugly stack trace, Face will print a
readable error message of your choosing, then exit with a nonzero
exit code.

Middleware

Coming soon!

	Dependency injection (like pytest!)

	autodoc
* inventory of all production-grade middlewares

Testing

Face provides a full-featured test client for maintaining high-quality
command-line applications.

	
class face.CommandChecker(cmd, env=None, chdir=None, mix_stderr=False, reraise=False)

	Face’s main testing interface.

Wrap your Command instance in a CommandChecker,
run() commands with arguments, and get
RunResult objects to validate your Command’s behavior.

	Parameters

	
	cmd – The Command instance to test.

	env (dict) – An optional base environment to use for subsequent
calls issued through this checker. Defaults to {}.

	chdir (str) – A default path to execute this checker’s commands
in. Great for temporary directories to ensure test isolation.

	mix_stderr (bool) – Set to True to capture stderr into
stdout. This makes it easier to verify order of standard
output and errors. If True, this checker’s results’
error_bytes will be set to None. Defaults to False.

	reraise (bool) – Reraise uncaught exceptions from within cmd’s
endpoint functions, instead of returning a RunResult
instance. Defaults to False.

	
run(args, input=None, env=None, chdir=None, exit_code=0)

	The run() method acts as the primary entrypoint to the
CommandChecker instance. Pass arguments as a list or
string, and receive a RunResult with which to verify
your command’s output.

If the arguments do not result in an expected exit_code, a
CheckError will be raised.

	Parameters

	
	args – A list or string representing arguments, as one might
find in sys.argv or at the command line.

	input (str) – A string (or list of lines) to be passed to
the command’s stdin. Used for testing
prompt() interactions, among others.

	env (dict) – A mapping of environment variables to apply on
top of the CommandChecker’s base env vars.

	chdir (str) – A string (or stringifiable path) path to
switch to before running the command. Defaults to
None (runs in current directory).

	exit_code (int) – An integer or list of integer exit codes
expected from running the command with args. If the
actual exit code does not match exit_code,
CheckError is raised. Set to None to disable
this behavior and always return
RunResult. Defaults to 0.

Note

At this time, run() interacts with global process
state, and is not designed for parallel usage.

	
fail(*a, **kw)

	Convenience method around run(), with the
same signature, except that this will raise a
CheckError if the command completes with exit code
0.

	
fail_X()

	Test that a command fails with exit code X, where X is an integer.

For testing convenience, any method of pattern fail_X() is the
equivalent to fail(exit_code=X), and fail_X_Y() is
equivalent to fail(exit_code=[X, Y]), providing X and
Y are integers.

	
class face.testing.RunResult(args, input, exit_code, stdout_bytes, stderr_bytes, exc_info=None, checker=None)

	Returned from CommandChecker.run(), complete with the
relevant inputs and outputs of the run.

Instances of this object are especially valuable for verifying
expected output via the stdout and
stderr attributes.

API modeled after subprocess.CompletedProcess for
familiarity and porting of tests.

	
args

	The arguments passed to run().

	
input

	The string input passed to the command, if any.

	
exit_code

	The integer exit code returned by the command. 0 conventionally indicates success.

	
stdout

	The text output (“stdout”) of the command, as a decoded
string. See stdout_bytes for the bytestring.

	
stderr

	The error output (“stderr”) of the command, as a decoded
string. See stderr_bytes for the bytestring. May be
None if mix_stderr was set to True in the
CommandChecker.

	
stdout_bytes

	The output (“stdout”) of the command, as an encoded bytestring. See
stdout for the decoded text.

	
stderr_bytes

	The error output (“stderr”) of the command, as an encoded
bytestring. See stderr for the decoded text. May be
None if mix_stderr was set to True in the
CommandChecker.

	
returncode

	Alias of exit_code, for parity with subprocess.CompletedProcess

	
exc_info

	A 3-tuple of the internal exception, in the same fashion as
sys.exc_info(), representing the captured uncaught
exception raised by the command function from a
CommandChecker with reraise set to
True. For advanced use only.

	
exception

	Exception instance, if an uncaught error was raised.
Equivalent to run_res.exc_info[1], but more readable.

	
exception face.testing.CheckError(result, exit_codes)

	Rarely raised directly, CheckError is automatically
raised when a CommandChecker.run() call does not terminate
with an expected error code.

This error attempts to format the stdout, stderr, and stdin of the
run for easier debugging.

Input / Output

Face includes a variety of utilities designed to make it easy to write
applications that adhere to command-line conventions and user
expectations.

	
face.echo(msg, **kw)

	A better-behaved print() function for command-line applications.

Writes text or bytes to a file or stream and flushes. Seamlessly
handles stripping ANSI color codes when the output file is not a
TTY.

>>> echo('test')
test

	Parameters

	
	msg (str) – A text or byte string to echo.

	err (bool) – Set the default output file to sys.stderr

	file (file) – Stream or other file-like object to output
to. Defaults to sys.stdout, or sys.stderr if err is
True.

	nl (bool) – If True, sets end to '\n', the newline character.

	end (str) – Explicitly set the line-ending character. Setting this overrides nl.

	color (bool) – Set to True/False to always/never echo ANSI color
codes. Defaults to inspecting whether file is a TTY.

	
face.echo_err(*a, **kw)

	A convenience function which works exactly like echo(), but
always defaults the output file to sys.stderr.

	
face.prompt(label, confirm=None, confirm_label=None, hide_input=False, err=False)

	A better-behaved input() function for command-line applications.

Ask a user for input, confirming if necessary, returns a text
string. Handles Ctrl-C and EOF more gracefully than Python’s built-ins.

	Parameters

	
	label (str) – The prompt to display to the user.

	confirm (bool) – Pass True to ask the user to retype the input to confirm it.
Defaults to False, unless confirm_label is passed.

	confirm_label (str) – Override the confirmation prompt. Defaults
to “Retype label” if confirm is True.

	hide_input (bool) – If True, disables echoing the user’s
input as they type. Useful for passwords and other secret
entry. See prompt_secret() for a more convenient
interface. Defaults to False.

	err (bool) – If True, prompts are printed on
sys.stderr. Defaults to False.

prompt() is primarily intended for simple plaintext
entry. See prompt_secret() for handling passwords and other
secret user input.

Raises UsageError if confirm is enabled and inputs do not match.

	
face.prompt_secret(label, **kw)

	A convenience function around prompt(), which is
preconfigured for secret user input, like passwords.

All arguments are the same, except hide_input is always
True, and err defaults to True, for consistency with
getpass.getpass().

TODO

	TODO: InputCancelled exception, to be handled by .run()

	TODO: stuff for prompting choices

	TODO: pre-made –color flag(s) (looks at isatty)

Face FAQs

TODO

What sets Face apart from other CLI libraries?

In the Python world, you certainly have a lot of choices among
argument parsers. Software isn’t a competition, but there are many
good reasons to choose face.

	Rich dependency semantics guarantee that endpoints and their dependencies
line up before the Command will build to start up.

	Streamlined, Pythonic API.

	Handy testing tools

	Focus on CLI UX (arg order, discouraging required flag)

	TODO: contrast with argparse, optparse, click, etc.

Why is Face so picky about argument order?

In short, command-line user experience and history hygiene. While it’s
easy for us to be tempted to add flags to the ends of commands, anyone
reading that command later is going to suffer:

cmd subcmd posarg1 --flag arg posarg2

Does posarg2 look more like a positional argument or an argument
of --flag?

This is also why Face doesn’t allow non-leaf commands to accept
positional arguments (is it a subcommand or an argument?), or flags
which support more than one whitespace-separated argument.

Any recommended patterns for laying out CLI code?

	Dedicated cli.py which constructs commands.

	main function should take argv as an argument

	if __name__ == '__main__': main(sys.argv)

	Entrypoints are nicer than -m

Index

 A
 | C
 | E
 | F
 | G
 | I
 | P
 | R
 | S
 | U

A

 	
 	add() (face.Command method)

 	add_command() (face.Command method)

 	
 	add_middleware() (face.Command method)

 	args (face.testing.RunResult attribute)

C

 	
 	CheckError

 	Command (class in face)

 	
 	CommandChecker (class in face)

 	CommandLineError (class in face)

E

 	
 	echo() (in module face)

 	echo_err() (in module face)

 	
 	exc_info (face.testing.RunResult attribute)

 	exception (face.testing.RunResult attribute)

 	exit_code (face.testing.RunResult attribute)

F

 	
 	fail() (face.CommandChecker method)

 	
 	fail_X() (face.CommandChecker method)

G

 	
 	get_dep_names() (face.Command method)

 	
 	get_flag_map() (face.Command method)

I

 	
 	input (face.testing.RunResult attribute)

P

 	
 	prepare() (face.Command method)

 	
 	prompt() (in module face)

 	prompt_secret() (in module face)

R

 	
 	returncode (face.testing.RunResult attribute)

 	run() (face.Command method)

 	(face.CommandChecker method)

 	
 	RunResult (class in face.testing)

S

 	
 	stderr (face.testing.RunResult attribute)

 	stderr_bytes (face.testing.RunResult attribute)

 	
 	stdout (face.testing.RunResult attribute)

 	stdout_bytes (face.testing.RunResult attribute)

U

 	
 	UsageError (class in face)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 face

 		
 Tutorial

 		
 Part I: Say

 		
 Positional arguments

 		
 Flags

 		
 Flags with values

 		
 More Interesting Flag Types

 		
 Part II: Calc

 		
 Add and Multiply

 		
 Subtract

 		
 Divide

 		
 Precision support

 		
 Part III: Middleware

 		
 Part IV: Examples

 		
 Cut MP4

 		
 Glom

 		
 Pocket Protector

 		
 Montage Admin Tools

 		
 Command

 		
 Command Exception Types

 		
 Middleware

 		
 Testing

 		
 Input / Output

 		
 TODO

 		
 Face FAQs

 		
 What sets Face apart from other CLI libraries?

 		
 Why is Face so picky about argument order?

 		
 Any recommended patterns for laying out CLI code?

_static/up-pressed.png

_static/up.png

_static/plus.png

